Molding acoustic, electromagnetic and water waves with a single cloak

نویسندگان

  • Jun Xu
  • Xu Jiang
  • Nicholas Fang
  • Elodie Georget
  • Redha Abdeddaim
  • Jean-Michel Geffrin
  • Mohamed Farhat
  • Pierre Sabouroux
  • Stefan Enoch
  • Sébastien Guenneau
چکیده

We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A metasurface carpet cloak for electromagnetic, acoustic and water waves

We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provide...

متن کامل

Achieving control of in-plane elastic waves

We derive the elastic properties of a cylindrical cloak for in-plane coupled shear and pressure waves. The cloak is characterized by a rank 4 elasticity tensor with 16 spatially varying entries which are deduced from a geometric transform. Remarkably, the Navier equations retain their form under this transform, which is generally untrue [Milton et al., New J. Phys. 8, 248 (2006)]. We numericall...

متن کامل

Making waves round a structured cloak: lattices, negative refraction and fringes

Using the framework of transformation optics, this paper presents a detailed analysis of a non-singular square cloak for acoustic, out-of-plane shear elastic and electromagnetic waves. Analysis of wave propagation through the cloak is presented and accompanied by numerical illustrations. The efficacy of the regularized cloak is demonstrated and an objective numerical measure of the quality of t...

متن کامل

Broadband solid cloak for underwater acoustics

Shielding an object to be undetectable is an important issue for engineering applications. Cloaking is the ultimate shielding example, routing waves around an object without mutual interaction, demonstrated as possible in principle by transformation and metamaterial techniques. Example applications have been successfully designed and validated for electromagnetic wave, thin plate flexural wave,...

متن کامل

شناسایی جریان‌های زیردریایی توسط امواج صوتی

Acoustic wave propagates properly in water, whilst most forms of electromagnetic waves, particularly in salty and dense sea water, are attenuated after a few tens or hundreds of meters so that it will be impossible to trace and detect them. This paper presents a special method for recognizing probable underwater currents, and reconstruction of their intensities, widths, and directions by usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015